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A B S T R A C T

Periodic cellular structures are widely used in structural protection due to their lightweight and excellent
energy absorption characteristics, but the corresponding crashworthy design is still limited. Based on the
framework of hybrid cellular automata (HCA), the optimal design of periodic cellular structure for crashwor-
thiness is carried out. To guarantee the periodicity of cellular structure, elemental internal energy (EIE) is redis-
tributed averagely as a periodic constraint. Then, by iteratively modifying the local EIE target, the cellular
structure is optimized until the maximum energy absorption (EA) is obtained under the specific volume frac-
tion constraint. Through several 2D and 3D numerical examples, this design method is proved to be efficient for
the crashworthiness design of periodic cellular structures. Specifically, EA of the optimized cellular structures
in this study can be improved by design comparing with solid structures and classical honeycombs. Effects of
cellular number and volume gradient on crashworthiness are also discussed.
1. Introduction

Crashworthiness is highly demanded in high‐end equipment from
various industries, e.g., automotive, transportation and aerospace
[1]. Periodic cellular structure has attracted wide attention as excel-
lent lightweight energy absorbers for crashworthiness applications
[2,3]. The deformation mode and energy absorption (EA) of cellular
structures depend on the topology of unit cell. Ruan et al. [4] investi-
gated the hexagonal honeycomb and discussed effects of cell wall
thickness on the localized deformation modes. Also, three in‐plane
deformation modes (i.e., X mode, V mode and I mode) were discov-
ered respectively corresponding to low, moderate and high impact
velocities. Other honeycombs, e.g., square [5,6], triangle [7,8] are also
widely applied in EA. Square and triangular honeycombs absorb
energy through plastic yielding of side walls, while hexagonal honey-
comb depends on the plastic hinges at the apex possessing a relatively
stable deformation mode. With the rapid development of additive
manufacturing (AM) technology, lots of periodic cellular structures
were feasible to fabricate, e.g., lattice structure, hierarchical structure,
gradient structure. These new structures could bear more complicated
loads with higher specific energy absorption (SEA). McKown et al. [9]
and Ozdemir et al. [10] experimentally studied EA characteristics of
body‐centred cubic (BCC) and diamond structures, respectively. Hu
et al [11] explored the impact mitigation of double helical metamate-
rials inspired by the DNA structure. Hybrid structure combines the
advantages of different cellular structures to obtain a better structural
performance [12,13]. The hybrid of lattice truss and square honey-
comb, named as honeytube, is superior to its constitutive structures
from the perspective of SEA [14]. Similar strategy by structural
hybrids had also been employed in Refs [15,16]. Nature’s materials,
e.g., butterfly wing, cancellous bone, often exhibit remarkable
mechanical properties with additional structure hierarchy. Initially
proposed by Lakes [17], hierarchical cellular structure had recently
received extensive attention in EA applications. Qiao and Chen [18]
proposed a hexagonal hierarchical structure, whose cell walls are com-
posed of triangular honeycombs, and investigated the mechanical
behavior under quasi‐static and dynamic loads. Inspired by pomelo
peel, a novel hierarchical structure is constructed with higher SEA
[19]. Also, experimental results indicated that the mechanical proper-
ties of self‐similar hierarchical octet‐truss lattice structures were irrel-
evant to the relative density, but determined by the strut slenderness
ratios in the two hierarchical levels [20]. Regarding on gradient cellu-
lar structures, Shen et al. [21] designed a hexagonal honeycomb
whose deformation modes were observed different as impact loading
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on the weaker or stronger end. Assembled by the BCC unit cell, the
gradient structure exhibited superior EA than the uniform structure
[22]. Although various periodic cellular structures had been proposed,
most of them were empirically designed or directly inspired by nature
materials, and a systematic design method is still limited.

As an effective lightweight design tool, structural topology opti-
mization had developed several popular approaches, e.g., solid isotro-
pic material with penalization (SIMP) method [23–25], bi‐directional
evolutionary structural optimization (BESO) method [26,27], level set
method (LSM) [28,29], moving morphable components (MMC)
[30,31]. These algorithms were all typically sensitivity‐based. How-
ever, sensitivities could not be easily obtained when the problem
involved geometry, material and contact nonlinearity simultaneously,
and thus limited research had been focused on the crashworthiness
optimization. Huang et al. [32] used two criterions to deduce the dis-
cretized sensitivities of crashworthiness optimization based on BESO.
In addition, equivalent static load (ESL) method [33] was proved to
be efficient by replacing the complicated nonlinear dynamic problem
with the simple linear elastic optimization one. As a non‐sensitivity
topology optimization technology, hybrid cellular automata (HCA)
was popular in crashworthiness design. Panel et al. [34] successfully
introduced the HCA into the crashworthiness optimization. In HCA,
the design domain was discretized by cellular automata (CA) cells,
and the physical quantities (e.g., elemental internal energy (EIE)) were
updated by following the full‐stressed principal. By dividing the design
domain into flexible and rigid areas, Bandi et al. [35] proposed an
energy‐controlled strategy, where the flexible area was used to absorb
energy versus the rigid area played a supporting role. Duddeck et al.
[36] developed an optimization methodology for crashworthiness of
thin‐walled structures combining the ground structure approach and
HCA. The local plastic hinge lines occurred because lots of shell ele-
ments were used to simulate the thin walls. Accordingly, HCA could
fast iterate and converge, which was easy for secondary development
with no requirement of sensitivity.

This study focuses on extending HCA for the crashworthiness
design of periodic cellular structures and is organized as followed.
The optimization methodology for crashworthy cellular structure is
described in detail in Section 2. Then, in Section 3, the superiority
of the optimized cellular structures, governing factors of the optimiza-
tion results and model adaption in 3D problem are discussed through
several numerical examples.

2. Optimization methodology

As illustrated in Fig. 1, one beam, composed of mx �my periodic
cellular cells, is subjected to an impact loading under the prescribed
boundary conditions. Where mx and my are the cellular numbers along
x and y directions, respectively. The whole structure is further divided
Fig. 1. Crashworthiness optimization of perio
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into m� n CA cells which are overlapped with the finite element (FE)
meshes, where n is the number of finite elements in each cellular cell.
In each CA cell, two field variables are defined, i.e., EIE Ui;j and ele-
mental relative density xi;j, where i and j stand for cellular and CA cell
labels, respectively. Note that the cellular structure corresponds to a
solid crashworthy structure as m ¼ 1.

Generally, EA of metal structure depends on plastic deformation
and folding [34], which can be calculated by the enclosed curved area
of external force and its corresponding structural deformation. Alter-
natively, for a structure discretized by the finite elements, EA can be
represented by ∑M

i¼1∑
N
j¼1Ui;j as well, indicating that more energy needs

to be stored in elements to improve the EA capacity of structure. As
illustrated in Fig. 2, energy in each element generally includes two
parts, i.e., elastic energy Ue

i;j and plastic energy Up
i;j. However, Ue

i;j

should not be considered in the final EA owing to its recoverability.
Following the full‐stress principal, HCA adopts a local control strat-

egy to achieve the global optimization. The algorithm will retain the
element whose EIE is greater than the target value, and delete the ones
whose EIE is smaller than the target value, so as to maximize the EA
capacity under the specific volume fraction constraint. In the optimiza-
tion, xi;j is the design variable and the final topology can be generated
by optimizing xi;j to 0 or 1.

Based on the above description, the crashworthiness optimization
of periodic cellular structure can be formulated as

find xi;j

min jj
^
U
�∼

i;j � U�jj 1:1ð Þ
s:t: M€sþ C_sþ Ks ¼ F 1:2ð Þ
∑
m

i¼1
∑
n

j¼1
xi;jVi;j ¼ V�

f 1:3ð Þ

xmin ⩽ xi;j ⩽ 1 1:4ð Þ
x1;j ¼ xi;j::: ¼ xm;j 1:5ð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Different with other optimization formulation, Eq. (1.1) is an
expression of locally operating on the EIE to evolutionarily achieve

the global target. Where
^
U
�∼

i;j is the effective EIE, and its solution will
be detailed stated in Section 2.2. U� is the target EIE which should
be decided according to the specific requirement. In Eq. (1.2), M, C
and K are mass, damping and stiffness matrices, respectively. €s, _s
and s respectively represent acceleration, velocity and displacement.
Solving Eq. (1.2) is relatively slow because impact is a complicated
dynamic problem involving geometry, material and contact nonlinear-
ity, simultaneously. Generally, two schemes can be selected to solve
crash problems, i.e., explicit and implicit schemes. Compared with
the implicit scheme, the explicit scheme has superiority in computa-
tional time and convergence. Due to the nonlinear solver needs to be
dic cellular structure with HCA method.



Fig. 3. A piecewise linear model with describing the elastic–plastic material
behavior.

Fig. 2. Composition of energy at the element level. Notes: Up
i;j and Ue

i;j stand
for plastic energy and elastic energy, respectively.
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iteratively used in the optimization, the explicit scheme is adopted in
this article. Eq. (1.3) confines the dosages of materials to be equal to
V�

f , where Vi;j is the jth elemental volume in cellular cell i. In Eq.
(1.4), to avoid the possible singularity, xmin is set to be 0.05 instead
of 0.001 in linear optimization, because smaller xmin will affect the effi-
ciency of FE solution when the problem involves nonlinearity. With
Fig. 4. CA neighborhood layouts: (a) 2D Von
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the evolution of structural topologies, excessive low‐density elements
still cause the convergence problem. To alleviate this artificial stiffness
problem, the elements will be removed from the FE model if xi;j ⩽ xmin.
Although the elements are deleted, the design variables still exist in CA
cells with a value of 0.05. And the deleted ones will be allowed to
return to the FE model once xi;j > xmin again. In order to satisfy the
periodicity of cellular structures, Eq. (1.5) denotes the status of design
variables at the same position in different cellular cells.

2.1. Material interpolation

Due to impact is always accompanied by the plastic deformation,
only the elastic assumption is no longer applicable. And the plastic
behavior of the material should be considered as well. As illustrated
in Fig. 3, a piecewise linear model is constructed to approximately
describe the elastic–plastic behavior in each element, as

Ei;j ¼ xp
i;jE0 ð2:1Þ

σYi;j ¼ xp
i;jσ

Y
0 ð2:2Þ

Etk
i;j ¼ xp

i;jE
tk
0 ð2:3Þ

where E0, σY
0 , E

tk
0 are Young’s modulus, yield stress, hardening mod-

ulus of the base material. It can be seen from Eqs. (2.2) and (2.3) that
the stress will vary with the design variable xi;j when plastic deforma-
tion happens. p is a penalization parameter whose value is set as 1
[34].

Meanwhile, the elemental material density also varies with the
design variable xi;j as

ρi;j ¼ xi;jρ0 ð3Þ
where ρ0 is the density of the base material.

2.2. Updating rules and convergence criteria

Without sensitivity information, the update of design variable xi;j

mainly depends on the deviation between the target value and the
effective EIE. In this work, the proportional control strategy is adopted
to restrain the amplitude change of xi;j.

xðlþ1Þ
i;j ¼ xðlÞ

i;j þ ΔxðlÞ
i;j ð4Þ

lΔxðlÞ
i;j

ΔxðlÞ
i;j ¼ maxf�0:1;minfCpð

^
U
�∼
ðlÞ

i;j =U
�ðlÞ � 1Þ;0:1g ð5Þ

where Cp is the proportional gain to control the amplitude change of xi;j.
The suggested value of Cp is 0.2 according to the numerical tests. More-
Neumann ne= 4; (b) 3D radial ne= 18.



Fig. 5. Flow chart of crashworthiness topology optimization of periodic cellular structure.

Table 1
Material parameters of aluminum [34].

Property Value

Density (kg/m3) 2700
Elastic modulus (GPa) 70
Yield stress (MPa) 180
Strain hardening (/MPa) (0.00, 180), (0.01, 190)

(0.02, 197), (0.05, 211.5)
(0.1, 225.8), (0.15, 233.6)
(0.2, 238.5), (0.4, 248.5)
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over, a maximum move limit of 0.1 is enforced on Δxi;j to avoid the iter-

ative instability in the optimization. The effective EIE ~̂�Ui;j is mutually
4

decided by the values of CA cell j and its neighborhood. Using an aver-

aging strategy, the effective ~̂�Ui;j can be obtained through

~̂�Ui;j ¼
~�Ui;j þ∑ne

e¼1
~�Ui;e

neþ 1
ð6Þ

where ~�Ui;j and ~�Ui;e respectively represent the averaged EIE in CA cell j
and its neighboring CA cells with considering the historical informa-
tion. ne is the total number of CA cells in the neighborhood. In
Fig. 4, red and green blocks stand for the CA cell j and its neighborhood.
The von Neumann layout including 4 neighbors and the radial layout
including 18 neighbors are adopted in 2D design and 3D design, respec-



Fig. 6. Schematic information of 2D fully-clamped beam and resulting half-span topologies: (a) design domain and boundary conditions; (b) solid structure;
cellular structure with mx × my (c) = 2 × 1; (d) = 4× 2; (e) = 8 × 4.

Fig. 7. The force–displacement curves of the initial structure with different
mesh sizes.
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tively. Actually, this average strategy can be viewed as the filter in
SIMP, which can prevent the checkerboard and mesh dependency phe-
nomena in the optimization.
5

In the optimization, material distributions usually oscillate
between the iterations due to the instability of solving dynamic prob-
lems. This problem can be substantially relieved through averaging the

EIE with its historical information. Therefore, U
�∼

i;j in Eq. (6) can be
written as

U
�∼ ðlÞ

i;j ¼
1

∑3
q¼0w

q
i;j

∑
3

q¼0
wq

i;jU
� ðl�qÞ
i;j ð7Þ

where wi;j is the weight factor and can be written as ðxi;j � xminÞ2. Three
previous information of EIE is utilized in this work.

The periodic cellular structure can be realized when
x1;j ¼ xi;j::: ¼ xm;j. From Eqs. (4)–(7), it is easily known that if

U
�
1;j ¼ U

�
i;j::: ¼ U

�
m;j, we will have x1;j ¼ xi;j::: ¼ xm;j finally. In order to

satisfy the above relationship, U
�
i;j can be averaged as

U
�
1;j ¼ U

�
i;j::: ¼ U

�
m;j ¼ ∑

m

i¼1
Ui;j=m ð8Þ

where Ui;j is the actual EIE value directly obtained by FE solver.
Although Eq. (8) is simple, it keeps the internal energy of the whole
structure constant during EIE redistribution process. Note that although
FE solving is enforced on the whole structure, the update process of xi;j

can be conducted only in a representative unit cell to save computa-
tional cost because of the periodicity.



Fig. 8. Iteration of cellular structure with mx × my = 8× 4: (a) iterative histories of mean EIE and volume fraction constraint; (b) force–displacement curves of
different iterative steps.

Fig. 9. Crashworthiness performance with different cellular numbers: (a) force–displacement curves; (b) EA capacity; (c) sensitivities of cellular numbers versus
crashworthiness indicators.
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An inverse relationship exists between the target EIE and target vol-
ume fraction, serving as the foundation of the volume constraint. Fur-
thermore, in order to restrain the actual volume fraction as the target
one, a secondary inner iteration is adopted. In the sub‐loop, the target
EIE is constantly updated according to
6

U�ðdþ1Þ ¼ U�ðdÞðV ðdÞ
f =V�

f Þ ð9Þ

where V ðdÞ
f is the material volume fraction in the dth sub‐loop step. The

sub‐loop will stop when jV ðdÞ
f � V�

f j ⩽ 0:5%.
The optimization iteration will terminate when



Fig. 10. Equivalent plastic strain–time plot of different type of structures:(a) solid structure; (b) cellular structure with mx × my = 4× 2.

Fig. 11. Resulting cellular structure in consideration of orthotropic constraint.
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jΔV ðlÞj þ jΔV ðl�1Þj
2V0

⩽ ɛ ð10Þ

where V0 stands for the volume of full design. The change of volume
between two adjacent iteration steps ΔV can be expressed as
V ðlÞ � V ðl�1Þ, where V ðlÞ and V ðl�1Þ respectively decide the material vol-
ume in lth and ðl - 1Þth iteration steps. Based on trial testing, the conver-
gence tolerance ɛ is set as 0.1% in the current work.

The key steps for the crashworthiness topology optimization of
periodic cellular structures are given in Fig. 5.

3. Numerical examples

In this section, effects of cellular number, volume gradient, and
model adaption in the 3D design are discussed in detail through sev-
eral numerical examples. Although this work is to maximize the capac-
ity of EA, initial peak force and maximum deformation [1] are also
discussed to overall evaluate the crashworthiness of optimized cellular
structures. In all the numerical examples, the beams are designed to be
impacted by rigid poles under different boundary conditions. The rigid
pole is modeled with discrete rigid shell elements. A reference point
with concentrated mass is built on the rigid pole. Moreover, the
degrees of the reference point in x and z directions are constrained
and an initial velocity in ‐y direction is enforced. In 2D examples,
the design domains are discretized by shell elements with constraining
out‐plane freedom for easily enforcing self‐contacts. During the
impact, two contacts are considered, i.e., the contact between the rigid
pole and the beam, the self‐contact of the beam. The friction coeffi-
cient between the pole and the beam is assumed as 0.3 [35]. In the cur-
rent study, aluminum metallic material is adopted, whose specific
7

property is given in Table. 1. In the optimization, the initial design
starts from the intermediate density with the value of target volume
fraction, i.e., xi;j ¼ V�

f . The optimization algorithm is programmed in
Matlab in integration with nonlinear FEA solver, such as Abaqus.

3.1. 2D problems

3.1.1. Example I: A fully-clamped beam
The effect of cellular number is investigated with

m ¼ mx �my ¼ 1� 1, 2� 1,4� 2 and 8� 4. As illustrated in Fig. 6
(a), the half model with enforcing the symmetric boundary conditions
is adopted in the optimization for improving the computational effi-
ciency, which is adopted in the following examples. In this example,
the target volume fraction V�

f is set as 50%, and the beam is subjected
to impact loading with a 40 kg rigid pole and an initial velocity of
20 m/s. The design domain is discreted by mesh size of
5 mm� 5 mm with a thickness of 20 mm. The mesh dependence anal-
ysis of the initial structure is shown in Fig. 7, and good convergence
could be observed when mesh size is 5 mm. In consideration of the
computational efficiency, the mesh size of 5 mm is selected in the fol-
lowing 2D examples. From Fig. 6(b‐e), the optimized cellular struc-
tures are significantly different with m. Meanwhile, all the
topological figures present anisotropic, which reflects the impact load-
ing direction very well. If not specified in the article, EA is adopted
instead of SEA because the mass keeps the same.

3.1.1.1. Robustness of the proposed method. In Fig. 8(a), it can be
observed that the volume fraction can satisfy the target value very
well. Mean EIE overall declines, although some oscillations exist dur-
ing the iteration. According to several representative topologies from
the initial design to the converged result, it can be observed that the
deformation of the beam is localized at the initial, and then tends to
deform integrally as the topology evolves. The beam becomes softer
when iteration increases, accompanied by larger structural deforma-
tion and lower peak force as shown in Fig. 8(b).

3.1.1.2. Effects of cellular number on crashworthiness. In Fig. 9(a), the
solid structure and cellular structure with mx �my ¼ 8� 4 have no
apparent initial peak force. Therefore, the peak force is taken as the
crashworthiness indicator in this example. For quantitative compar-
isons, EA of different structures are calculated according to Fig. 9(a),
and shown in Fig. 9(b). Obviously, cellular structures have higher
EA capacity and lower peak force. This is mainly due to that the mate-
rial in solid structure presents a concentrated distribution versus an
evenly distribution in cellular structure, which leads to cellular struc-
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ture possessing lower peak force and larger structural deformation,
and thus more energy is absorbed. Furthermore, with increasing of
m from 2� 1 to 8� 4, the capacity of EA and maximum deformation
monotonically increase by 4.7% and 75.4%, while the peak force
monotonically drops by 39.6%. This indicates that the cellular number
m is a key factor for crashworthiness of cellular structure, which will
provide design guidance for its engineering application. Taking the
solid structure as the benchmark, the absolute relative percentages
of the crashworthiness indicators (jðInc - IncsÞ=Incsj � 100%, where
Inc and Incs are crashworthiness indicators of cellular structures and
solid structure, respectively) can well reflect their sensitivities versus
to cellular numbers m as shown in Fig. 9(c). It can be obtained that
the maximum deformation is the most sensitive to cellular numbers,
followed by the peak force and EA.

To explain that some optimized structures do not have the initial
peak force, the deformation modes of solid structure and cellular struc-
ture with mx �my ¼ 4� 2 are analyzed. At time points A and B, the
solid structure deforms at the impacted end as shown in Fig. 10(a),
versus the beam integrally bends around the restrained end (red cir-
cled region with 1) at time point C. Moreover, the local support struc-
ture (red circled region with 2) hardly involves the deformation during
this period, so that a drop in load curve does not happen finally. How-
ever, in Fig. 10(b), tiny structural branches (red circled region) yield
plastic deformation at the time point B and deduce a local un‐
stability region, resulting in a sudden drop in load curve.
Fig. 12. Schematic information of 2D fixed-end beam and resulting half-span top
uniform cellular structure; cellular structure with (d) increased volume gradient; (

Table 2
Crashworthiness comparisons of cellular structures with and without ortho-
tropic constraint.

Orthotropic
constraint

EA (J) Initial peak force (kN) Max deformation (mm)

Yes 7722.7 120.0 76.4
No 7644.6 150.9 65.3

8

3.1.1.3. Effects of orthotropic constraint on crashworthiness. As averaging

U
�
i;j along the vertical and horizontal axes within a representative cel-

lular after Eq. (8), the final topologies exhibit orthotropy. As an illus-
tration, the cellular structure with mx �my ¼ 4� 2 is optimized under
the orthotropic constraint. As shown in Fig. 11, the optimized topolog-
ical configuration is totally different with the resulting topology in
Fig. 6(d). Through the quantitative comparisons in Table 2, as the
material is more evenly distributed under the orthotropy constraint,
a drop in peak force and an increase in max deformation happen. Cor-
respondingly, the capacity of EA has a slight improvement.

3.1.2. Example 2: fixed-end beam
The influence of volume gradient is discussed in this example. In

Fig. 12(a), the beam is impacted by a rigid pole with a mass of
50 kg at an initial velocity of 15 m/s. Cellular numbers along x and
y axes are fixed as 9 and 3. Two gradient structures are investigated,
i.e., from top to bottom, the volume fraction successively increases
or decreases between 40% and 60% with a step of 10%. For compar-
ison the resulting solid structure and uniform cellular structure under
the equivalent volume constraint of 50% are also illustrated in Fig. 12
(b–c). From Fig. 12(c–e), it can be observed that the volume gradient
has obvious influence on the resulting topologies of cellular structures.

3.1.2.1. Effects of volume gradient on crashworthiness design. As shown in
Fig. 13(a‐b), the solid structure has the lowest EA capacity, the highest
initial peak force and the smallest structural deformation among the
four structures. When compared with the uniform cellular structure,
the cellular structures with volume gradient have no superiority in
EA. However, their stiffness superiority can be demonstrated with
the initial peak force increasing 21.4% and 33.5%, and the maximum
structural deformation decreasing 19.9% and 19.5%. It is because that
the materials excessively concentrate on the top and bottom of the
beam to satisfy the volume gradient requirement, resulting in the gra-
ologies: (a) design domain and boundary conditions; (b) solid structure; (c)
e) decreased volume gradient.



Fig. 14. Classical cellular structures for EA: (a) square cellular; (b) triangular cellular.

Table 3
Crashworthiness comparisons between the optimized and classical cellular
structures.

Type of cellular structure SEA (J/g) Initial peak
force (kN)

Max deformation (mm)

Optimized 0.3217 100.9 78.6
Square 0.3171 92.0 98.3
Triangular 0.3198 83.7 88.5

Fig. 13. Crashworthiness performance of different types of structures: (a) force–displacement curves; (b) EA capacity; (c) sensitivities of gradient on
crashworthiness indicators.
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dient structure is stiffer than the uniform structure. Moreover, the cel-
lular structure with decreased volume gradient has a higher initial
peak force than the one with the increased volume gradient owing
9

to a stiffer top. As illustrated in Fig. 13(c), the influences of volume
gradient on crashworthiness indicators are in sequence of max defor-
mation > initial peak force > EA capacity. Additionally, increasing
or decreasing volume gradient from top to bottom only has a certain
influence on the initial peak force, but litter influence on the max
deformation and EA capacity.

3.1.2.2. Comparison with competing cellular structures. As shown in
Fig. 14, the optimized uniform cellular structure is compared with
the classical square and triangle honeycombs for illustrating the supe-
riority of the proposed methodology. The feature mesh size of square
and triangular honeycombs is limited to 5 mm as well. In Table 3, we



Fig. 15. Schematic information of 3D beam and resulting half-span topologies: (a) design domain and boundary conditions; (b) solid structure; (c) cellular
structure with mx × my = 3× 1.

Table 4
Crashworthiness comparisons of solid structure and cellular structure with
mx × my = 3 × 1.

Type of structure EA (J) Initial peak
force (kN)

Max
deformation
(mm)

Solid structure 121.0 13.1 11.7
Cellular structure with mx × my = 3× 1 131.3 8.4 18.5
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select SEA instead of EA because that the triangular structure is heav-
ier (16.8 kg) than the optimized structure (16.4 kg). Table 3 shows
that the optimized cellular structure has the highest SEA capacity with
the value of 0.3217 J/g. Compared with the square and triangular hon-
eycombs, the initial peak force of the optimized structure respectively
increases 9.7% and 20.5%. Meanwhile, the max deformation respec-
tively decreases by 20% and 11.2%. These indicate that the optimized
cellular structure has superior EA and stiffness performance. The
above comparisons demonstrate that the current proposed method is
effective in the crashworthiness design of cellular structures.

3.2. 3D numerical example

The adaption of 3D design is discussed in this section. As illustrated
in Fig. 15(a), the rigid pole is 3 kg with an initial impact velocity of
10 m/s. The volume fraction constraint is set as 30%. Cellular numbers
10
mx and my are set as 3 and 1, respectively. The beam is discretized
using 1 mm� 1 mm� 1 mm brick elements. Similarly, the resulting
topology of the solid structure is demonstrated as well for comparison.
As shown in Fig. 15(b‐c), it can be observed that the optimized cellular
structure is quite different with the solid structure. Similar to the 2D
cases, the anisotropic topological configuration reflects the direction
of the impact loading well. From Table 4, the optimized 3D cellular
structure increases by 8.5% and 58.1% in EA capacity and structural
deformation, and reduces by 35.9% in initial peak force with compar-
ison of the solid structure. Finally, these results indicate that the pro-
posed method can solve the 3D crashworthy optimization problem
very well.

4. Conclusions

A topology optimization method for crashworthiness design of
periodic cellular structures is developed in this study. Reallocating
EIE as an additional constraint is employed to ensure the periodicity
in the optimization iteration. The following conclusions are summa-
rized as:

1) The optimized cellular structures possess higher EA capacity
than the solid crashworthy structures and square/triangular
honeycombs.

2) The EA capacity and maximum deformation increase while the
initial peak force decreases with cellular number increasing.
The maximum deformation is the most sensitive while the EA
capacity is the least to the cellular number.
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3) Compared with the uniform cellular structure, the gradient cel-
lular structures possess superior stiffness but not EA. Also,
effects of the volume gradient on max deformation and initial
peak force are more significant than those on EA.

4) The proposed method can be extended to optimize the 3D peri-
odic cellular structures.
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