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Abstract
Based on hybrid cellular automata (HCA), we present a two-scale optimization model for heterogeneous structures with non-
uniform porous cells at the microscopic scale. The method uses the K-means clustering algorithm to achieve locally
nonperiodicity through easily obtained elemental strain energy. This energy is used again for a two-scale topological optimization
procedure without sensitivity analysis, avoiding drastically the computational complexity. Both the experimental tests and
numerical results illustrate a significant increase in the resulting structural stiffness with locally nonperiodicity, as compared to
using uniform periodic cells. The effects of parameters such as clustering number and adoptedmethod versus classical Optimality
Criteria (OC) are discussed. Finally, the proposed methodology is extended to 3D two-scale heterogeneous structure design.

Keywords Concurrent optimization . Hybrid cellular automata . Clustering algorithm . Non-uniformmicrostructure

1 Introduction

Lightweight structures are the long-time pursuit of human
society for more sustainable lives (Schaedler et al. 2011;
Wang et al. 2016; Yin et al. 2017). With the development of
understanding of material structure-property, designing mate-
rials from a variety of length scales, from nano-scale
(Baughman et al. 2002), microscale (Evans et al. 2001; Xu
et al. 2018; Xu et al. 2019) to macro-scale (Xie et al. 2012) and
multi-scales (Yao et al. 2011; Zhang et al. 2019), is regarded as
one of the most promising methodologies for improving and

optimization of mechanical performance of structures (Lakes
1993; Zhang et al. 2011).

One of the key problems for material design is the material
distribution over the various length scales. Generally, elegant
and smart topology optimization methodology is needed for
integration macro structure performance with micromaterial
properties. Pioneering researchers such as Rodrigues et al.
(Rodrigues et al. 2002) firstly achieved a hierarchical topology
optimization technique with material distribution varying from
point to point. Later, this model was extended to a 3D problem
(Coelho et al. 2008). This approach can maximize the structural
optimization capacity in theory. However, the major disadvan-
tage of this methodology costs massive computational re-
sources and results in the poor manufacturability. To satisfy
the constraints of manufacturing, under the framework of solid
isotropic material with penalization (SIMP), Liu et al. (Liu et al.
2008) proposed a popular concurrent optimizationmodel with a
uniform microstructure. Lining with this idea, concurrent opti-
mization with diverse physical problems is widely discussed,
e.g., dynamic problem (Niu et al. 2009), thermoelastic problem
(Deng et al. 2013), and acoustic problem (Liang and Du 2019).
Besides the SIMP method, bidirectional evolutionary structural
optimization method with black-and-white material distribu-
tions also contributed intensively in two-scale optimization
(Da 2019; Xu et al. 2016; Xu and Xie 2015; Yan et al. 2014;
Yan et al. 2015). It is obvious that consideration of point-to-
point material distribution in microstructure level is usually
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redundant and low-efficiency, homogeneous material design is
always far from optimal performance. By carefully observing
the structure in nature, e.g., animal bone and nacre shell, one
may observe that the structure can be generally divided into
several regions and the material topologies in the same region
are alike which provides us a new route for achieving good
manufacturability while obtaining certain material distribution
for good mechanical properties with limited design elements.
By bearing such idea in mind, Zhang and Sun (Zhang and Sun
2006) investigated the scale effect when cellular materials pres-
ent the graded distributions on the macro-scale. In the research
of Sivapuram et al. (Sivapuram et al. 2016), the non-uniform
microstructures with porous present worse stiffness perfor-
mance than the solid structures with the same material dosages.
Based on a multilevel finite element approach (Feyel and
Chaboche 2000), a non-uniform nonlinear multiscale comput-
ing scheme is established by Xia and Breitkopf (Xia and
Breitkopf 2014). In considering the manufacturability, Wang
et al. (2018) recently developed an approach to optimize the
structure filled with parameterizable non-uniform lattice micro-
structures. Focusing on comparing the superiority of multi-
patch structure with macro-scale structure, a series of work with
the level set method were detailed described in recent research
work (Gao et al. 2019a; Gao et al. 2019b; Li et al. 2018).

As an effective nongradient optimization approach, hybrid
cellular automata (HCA) is inspired by the biological process
of bone remodeling and obeys a full-stressed principal. In
HCA methodology, the design domain is discretized by cellu-
lar automata (CA) cells. By using the finite element method
(FEM) to evaluate the strain energy density, Tovar et al. (Tovar
et al. 2006) developed the local control rules to improve the
model stability and numerical efficiency in topology optimi-
zation. Generally speaking, HCA has advantages in nonlinear
problems, e.g., crashworthiness topology optimization (Patel
et al. 2009), and more recently, HCA has been extended to be
applied in material design (Da et al. 2017).

This work aims to develop and extend the HCA method-
ology to concurrent design with consideration of non-uniform
microstructures. With the help of an energy-based homoge-
nized approach (Jie et al. 2018; Xia and Breitkopf 2015), the
elemental strain energy (ESE) on macro and microscales is
deduced. In terms of the clustering algorithm, the macro
ESE is divided into several levels to limit the categories of
microstructures. Moreover, the design variable update rules
with mass constraints are respectively established according
to the deduced ESE. The remainder of this paper is organized
as follows. The clustering concurrent optimization model with
HCA is described in detail in Section 2. In Section 3, a quasi-
static test is conducted to demonstrate the effectiveness of the
proposed method. In Section 4, the governing factors of the
optimization results and model adaption in the 3D design are
discussed through several numerical examples. Finally, con-
cluding remarks are given in Section 5.

2 Optimization methodology

As illustrated in Fig. 1, the macrostructure contains several
disparate patterned microstructures and each of them is period-
ically distributed within different regions according to load-
bearing capacity. In HCA methodology, the design domain is
discretized by CA cells and the state of each CA cell is decided
by design variable and field variable together. On the macro
scale, the design domain is discretized byM CA cells and each
macro CA cell corresponds to a cellular structure on micro-
scale. Take the elemental relative density Pm (m = 1, 2, ..., M)
and rkn (k = 1, 2, ..., K, n = 1, 2, ..., N) as the macro and
microdesign variables, respectively whereK stands for the total
types of microstructures and N stands for the numbers of CA
cells within a microstructure. Both Pm and rkn vary between [δ,
1] to represent the cell is solid or void where δ is set to be 0.001
to avoid numerical singularity in the optimization process. The
selection of the field variables depends on the specific physical
problem. Different from the conventional CA method, the
HCA utilizes the FEM to obtain the field variable. If the struc-
ture has higher stiffness, the lower strain energy it stores. In a
domain discretized by FEM, the strain energy can be expressed

as C ¼ ∑
M

m¼1
Cm, where Cm is the ESE. Therefore, the ESE is

the local indicator to evaluate the structural stiffness and is
naturally be chosen as the field variable in stiffness opti-
mization with HCA. It is noted that the CA cells are coin-
cident with the finite element (FE) meshes in this research.
Without gradient information, the quantity of material
added or removed in each iteration is locally manipulated
by different levels between actual ESE and target value.

Based on the above description, the two-scale optimization
model considering non-uniform microstructures can be for-
mulated as

find Pm; rknf g
min C ¼ 1

2
∑
M

m¼1
UT

mΚm Pm; rknð ÞUm 1:1ð Þ
s: t: KU ¼ F 1:2ð Þ

∑
M

m¼1
PmVm=Vmac

0 ¼ Vmac 1:3ð Þ

∑
N

n¼1
rknVkn=Vmic

k0 ¼ Vmic
k 1:4ð Þ

8>>>>><
>>>>>:
where C denotes the structural compliance; Um and Km are the
macro-elemental stiffness matrix and displacement vector. In
Eq. (1.2), K, U, and F represent the global stiffness matrix,
displacement vector, and load vector, respectively. Equations
(1.3) and (1.4) respectively restrict the dosages of materials on

macro and microscales to be equal to Vmac and Vmic
k , where Vm

and Vkn are the macro and micro-elemental volume, respective-

ly.Vmac
0 andVmic

k0 are defined as themacro andmicrovolumes of

solid design.
According to the description in Eq. (1), the two-scale opti-

mization with HCA includes the following three key steps,
i.e., (step 1) deduction of ESE on two scales; (step 2) material
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clustering distributions on macro-scale; and (step 3) update
rules of design variables and convergence condition.

2.1 Deduction of ESE on two scales

On the microscale, the SIMP interpolation is adopted to char-
acterize the modulus at a cell/element in the group k as

Ekn ¼ Emin þ rknð Þq E0−Eminð Þ ð2Þ
where E0 is Young’s modulus of base material and Emin is a

very small value to avoid the possible singularity. The value of
the penalty exponent q is set to be 4 to guarantee a black-and-
white material distribution (Da et al. 2017).

The relationship between macro and microscales depends
on the material effective elastic tensorDH. In the energy-based
homogenization approach, the effective elastic tensor of the
group k can be approximated in terms of element mutual en-
ergies (Jie et al. 2018; Xia and Breitkopf 2015).

DH
ijst kð Þ ¼ 1

jY j ∑
N

n¼1
Qkn

ijst ¼
1

jY j ∑
N

n¼1
uknij

� �T
kknu

kn
st ð3Þ

Fig. 1 Two-scale clustering optimization with HCA: a macrostructure, b non-uniform materials, and c unit cells

(a)

(d) (e)

(b)

(c)

Fig. 2 2D and 3D CA
neighborhood layouts: a 2D
empty ne = 0, b 2DVonNeumann
ne = 4, c 3D empty ne = 0, d 3D
Von Neumann ne = 6, and e 3D
radial ne = 18
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where ∣Y∣ is the area in 2D or the volume in 3D of micro-

structure. Qkn
ijst denotes the element mutual energies in kth the

microstructure. As to 2D case, i, j, s, t = 1, 2 and i, j, s, t = 1, 2,
3 in 3D case. ukn stands for the induced element displacements

which can be obtained by the equilibrium equation of force-
displacement (Jie et al. 2018; Xia and Breitkopf 2015). Micro-
elementary stiffness kkn can be obtained through the integra-

tion on elemental volume Vkn, as Ekn∫Vknb
TD0bdVkn, where b

Final design

No

If  the Vmac(l), Vmic(l)  
reaches the final target 

Check global convergence
according to Eq.(14)

Yes

No
95% V mac(l-1),
95%V mic(l-1)

l+1

Define ini�al design domains and 
clustering number K

Set macro and micro volume 
frac�ons 

Calculate the effec�ve 
material proper�es DH(k) 

according to Eq.(3) 

Calculate the macro and 
micro ESE according to 

Eqs.(6) and (7)

Update volume 
constraint on macro and 

micro scales

Outer loop

Cluster the macro ESE based 
on K-means algorithm

Yes

Update       and    
according to Eq. (12)

Update variables     and  
according Eqs. (10-11)

If Vmac(l), Vmic(l) is 
achieved

Inner loop

No

d

d+1

Yes

l

Fig. 3 Flow chart of achievement
of clustering design with HCA
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is the microstrain-displacement matrix, D0 is the elasticity
matrix without multiplying Young’s modulus. If the macro-
structure is composed of K types of microstructures, the ho-
mogenization method will be correspondingly called K times
to evaluate the performance of different microstructures.

On the macro scale, the effective elasticity matrix of ele-
ment m, DMA

m , filled with microstructure k can be interpolated
by the porous anisotropic material with penalization model
(Liu et al. 2008) as

DMA
m kð Þ ¼ Pp

mD
H kð Þ ð4Þ

p is the macro penalization factor with the typical value of 3.
Furthermore, the global stiffness matrixK can be written as

the assembling of elemental stiffness matrix Km

K ¼ ∑
M

m¼1
Km ¼ ∑

M

m¼1
∫VmB

TDMA
m kð ÞBdVm ð5Þ

where B is the macro strain-displacement matrix. When the
element m is occupied by the microstructure k, the elemental
stiffness matrix should be expressed by the integration of cor-
responding material properties.

With applying the load and boundary conditions, we can
have the macro ESE through the FE analysis, as

Cm ¼ 1

2
UT

mΚmUm ð6Þ

Correspondingly, the entire structural strain energy
assigned to element n in microstructure k can be deduced as

Ckn ¼ 1

2
∑
M

m¼1
Pp
mU

T
m∫VmB

T 1

jY jQ
knBdVmUm ð7Þ

In the CA paradigm, the final field variable is mutually
decided by the neighborhood CA cells. Take average ESE

on macro-scale, Cm, as an illustration

Cm ¼
Cm þ ∑

ne

e¼1
Ce

neþ 1
ð8Þ

where Ce corresponds to the strain energy of a neighboring
cell/element and ne is the number of neighbors defined in the
CA paradigm. As shown in Fig. 2 b and d, the von Neumann
layout, including 4 neighbors in 2D and 6 neighbors in 3D, is
respectively employed in 2D design and 3D microdesign in
this work. For obtaining wider structural members, a radial
18-neighbors layout (Fig. 2e) is adopted in 3D macro optimi-
zation. Actually, the use of average strain energy instead of an
actual value can be viewed as a filtering technique that pre-
vents the checkerboard and mesh dependency phenomena in
the optimization process.

2.2 Material clustering distribution on macro-scale

To achieve the non-uniform distributions of materials on the
macro-scale, the clustering algorithm used to categorize data
into groups with similar characteristics is employed to cluster
the macro ESE. Note that the K-means (K stands for numbers

Preconnected 

region

(c)(b)

Preconnected 

region

(a)

Preconnected 

region

Fig. 5 Kinematical connectivity between nonperiodic microstructures in 2D and 3D

Fig. 4 Schematic 2D design
domain and boundary conditions
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of clusters) algorithm (Tan et al. 2006) is adopted in this work,
and other clustering methods can work similarly as well. The
detailed process of clustering ESE can be implemented after
the macro FE analysis and summarized as follows.

Step 1: Select K ESE as the initial cluster centers, and calcu-
late the norm distance between ESE and each cluster center as

Dkm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cm−Ckð Þ2

q
ð9Þ

Step 2: If Cm is closest to the cluster center Ck among all
cluster centers, the element m is categorized into the group k;

Step 3: Take the average strain energy of each group as the
new cluster center until the cluster center keeps constant.

2.3 Updating rules

For minimizing the deviation between the target and the actual
value of ESE, the local design rule using the concept of pro-
portional control theory is adopted. For simplicity, macro de-
sign variable Pm is taken as an example to demonstrate the
updating strategy for microdesign variables. It can be updated
as

Pm l þ 1ð Þ ¼ Pm lð Þ þΔPm lð Þ ð10Þ
where l stands for the current iteration. The change in design
variable ΔPm(l) can be stated as

ΔPm lð Þ ¼ cp � Cm=C*
m−1

� �
ð11Þ

where cp is the proportional gain to control the amplitude
change of the design variables. The suggested range of cp is
0.15~0.5 which is determined by the numerical examples. C*

m
is the local macro strain energy target.

It is observed that with the setpoint value C*
m increasing,

the volume of the resulting topology decreases and vice versa,

Fig. 7 The optimized structures
for 3D printing: a non-uniform
microstructures, and b uniform
microstructure

Fig. 6 Initial design

Table 1 The properties
of the resin for 3D
printing

Parameters Value

Tensile modulus 2370–2650 MPa

Tensile strength 35 MPa

Flexural modulus 2178-2222 MPa

Flexural strength 67 MPa

Elongation at break 6–9%

Poisson’s ratio 0.41

Density 1.16 g/cm3

J. Jia et al.



serving as the foundation of volume constraint. To achieve the
final volume, the elements are evolutionarily removed for sat-
isfying the changing volume target during each design itera-
tion. Moreover, a secondary inner iteration is used in lth the

design step with updatingC*
m iteratively until the volume con-

straint is satisfied which can be written as

C*
m d þ 1ð Þ ¼ C*

m dð Þ Vmac
f dð Þ

Vmac lð Þ
� �

ð12Þ

where d is the iterator in the sub-loop. Vmac
f is the material

volume fraction in the macro design domain. Vmac(l) is the
volume fraction target in single design iteration, which is set
as 95% of Vmac(l − 1).

In the optimization, the volume fraction constraints for
macro and microscales should be assigned according to the
specific requirements. In this research, the volume fraction
constraints of non-uniform microstructures satisfy the rela-
tionship as

Vmic
k ¼ Vmic

min þ Vmic
max−V

mic
min

� � K−Kkð Þ
K−1ð Þ

	 
ζ
ð13Þ

where Vmic
max and Vmic

min restrict the variation range of
microvolume fractions. Kk is the microstructure index from
[1,…, K]. Specifically, when a parameter ζ = 1, the
microvolume fractions will change linearly.

Fig. 8 The quasi-static tests of
optimized structures: a non-
uniform microstructures, and b
uniform microstructure

Fig. 9 The experimental force-displacement curve of optimized
structures
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The optimization will stop when no further change in mac-
ro and microvolumes at the same time (Tovar et al. 2006).
Such criteria can be expressed as

jΔV lð Þj þ jΔV l−1ð Þj
2V0

≤ε ð14Þ

where V0 stands for the volume of solid design on macro or
microscale.ΔV(l) = V(l) − V(l − 1), where V(l) and V(l − 1) in-
clude the macro and microvolumes in lth and (l − 1)th iteration
steps. Based on trial testing, the convergence tolerance ε is set
as 0.01% in this work for clearer topologies.

According to the description above, the key steps for the
achievement of clustering design with HCA are given in
Fig. 3.

3 Experimental validation

By means of the three-point flexural experiment, the perfor-
mance improvement of multi microstructures and the capability
of the proposed methodology for optimizing the non-uniform
microstructures are validated. As illustrated in Fig. 4, a 2D
beam under a concentrated force located at the center of the
top edge is optimized for experimental validation. For the sake
of discussions, the structural sizes, material properties, and ex-
ternal loads are all dimensionless for numerical design. The
material parameters are assumed as Young’s modulus is E =
2000, and Poisson’s ratio v = 0.41. The load magnitude is sup-
posed as F = 100. For a simple comparison, the 2D beam opti-
mization has no macrostructure design, that is Pm ≡ 1. Due to
symmetry, only the right-hand half the beam, composed of 4
and 1 microstructures respectively, is considered in the optimi-
zation process. The 3D printing technique is adopted to fabri-
cate the optimized structures in consideration of its superior
ability to produce complex structures. As we all know, the unit
cell should be infinitesimally small compared with the macro-
structures according to the homogenization theory. However,
because of the limits of the 3D printer and experiment condi-
tions, the macro design domain has to be divided into 8 × 4
elements with a size of 1. The microstructures are discretized
into 55 × 55 4 node quadrilateral plane stress elements with the
dimensionless size of 1. Moreover, the displacements are con-
fined at the locations for ensuring the support span length is less
than 200 mm. For ensuring the continuity, a number of
nondesign elements are preset as kinematically connective

Table 2 Macromaterial distributions and optimized microstructures with different K

Fig. 10 Comparisons between non-uniform and uniform microstructures

J. Jia et al.



constraints between the adjacent microstructures (Zhou and Li
2008). The connectors in Fig. 5 a are adopted in the design of
the experiment. As illustrated in Fig. 6, all the microstructures
start from an initial guess design which assigns a circular void
region in the center of the microdesign domain. In the design of
4 microstructures, the microvolume fraction constraints linearly

vary between [30%, 70%], i.e., Vmic
1 ¼ 30%, Vmic

2 ¼ 43:33%,

Vmic
3 ¼ 56:67%, and Vmic

4 ¼ 70%. To guarantee the same ma-
terial dosages, the volume fraction constraint in uniform micro-

structure is set as Vmic
1 ¼ 42:08%. The post-processing step

given in (Sigmund and Maute 2013) is used to eliminating
the intermediate variables completely in the numerical results.
In the results of clustering optimization, red, green, yellow, and
blue represent the dosages of material on microscale from large

Fig. 12 Resulting
macrostructures and its
microstructures versus disparate
Vmac

Fig. 11 Gradient structure
composed of four microstructures

Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata



to small. Note that the same color is used to reflect the corre-
sponding distributed locations on the macro-scale.

The resulting beams with 4 microstructures (Struct-A) and
uniformmicrostructure (Struct-B) are illustrated in Fig. 7. The
final compliance is C = 174.46 and 261.56, respectively. In
Fig. 7 a, the regions of material distribution reasonably exhibit
the contributions of different parts responding to the external
load. The numbers of red microstructure are 4, which are
located at the middle of the top and bottom edges. Besides
the red microstructures, the green microstructures are also the
primary bearing-load materials and distributed beside the red
microstructures. The yellow microstructures mainly act as a
role of load transmitting. Besides, the yellow microstructures
are observed to be distributed within the constraints applying
zones. Due to almost no load-bearing capacity, the blue mi-
crostructures just fill in the rest of the regions.

The optimized results are fabricated by the UnionTech 3D
printer with resin material whose specific performance has
been provided in Table 1. With the size of the unit cell as
16.5 mm× 16.5 mm, the dimensions of the beam are length
L = 264 mm, support span length Ls = 198 mm, height H =
66 mm, and width B = 13 mm. The final mass of the beams
varies between 111.39 and 111.55 g. The quasi-static tests
were performed with INSTRON 2345 and the loading rate is
set as 0.5 mm/min. The experiment for the same structure was
repeated twice, called as test 1 and 2 respectively.

From Fig. 8 a, it is known that since the microstructures
with the force directly applied were strengthened, the regions
of the most prone to deformations in Struct-Awere located at

the positions where the displacements were confined (red cir-
cled regions). Different from Struct-A, the deformation of the
Struct-B firstly initiated at the point of load applied (red
circled region with 1 in Fig. 8b). Then, the deformation was
triggered at the positions where the displacements were re-
stricted (red circled regions with 2 in Fig. 8b).

As illustrated in Fig. 9, the slope of the force-displacement
curve of Struct-A is obviously larger than the value of Struct-B,
which generally reflects that the Struct-A has superior in stiff-
ness than the Struct-B. As to Struct-A, the stiffness difference
between test 1 and 2 is caused by the random factors in
manufacturing. The average slopes of curves in Fig. 9 can be
calculated as 669.40 N/mm and 284.15 N/mm, respectively.
According to the test standard (ASTMInternational 2015), the
flexural secant modulus of elasticity can be evaluated by

Esecant
f ¼ L3s w

4HB3, where w is the slope of the force-displacement

curve. For the same Ls, H, and B, the final flexural secant
modulus of Struct-A is 2.36 of Struct-B. Due to the stiffness
that can be evaluated by the reciprocal of compliance, the ratio
of 1/C between Struct-A and Struct-B is equivalent to the ratio
of slopes between them. With the compliance provided, the
numerical flexural secant modulus of the Struct-A is 1.50 of
the Struct-B. For size effect and certain simplicity of the model,
the numerical results cannot match the experimental results
well. Despite the differences in values, both the numerical and
experimental results reveal that the structure composed of a
variety of microstructures has better stiffness performance than
the structure with uniform microstructure. Furthermore, the ef-
fectiveness of the proposed method in designing the clustering
structure is validated as well.

4 Numerical discussions

By means of several numerical examples, the effects of pa-
rameters, e.g., clustering number K, macro volume constraint
Vmac, and model adaption, are detailed discussed in this

Fig. 13 Iterations of compliance, macro and microvolume fractions with Vmac = 30%

Table 3 Percentages of microstructures with decreasing of Vmac

Vmac

(%)
Microstructure 1
(%)

Microstructure 2
(%)

Microstructure 3
(%)

70 0.16 18.17 81.67

50 0.78 77.09 22.14

30 7.42 85.71 6.86

J. Jia et al.



section. The connectors in Fig. 5 a–c are sequentially accepted
in the 2D and 3D examples. The macro- and micro-2D ele-
ment sizes and the material parameters are consistent with the
values used in the experimental design except the Poisson’s
ratio v = 0.3. In the 3D case, the microstructures are
discretized into 30 × 30 × 30 8 node brick elements. The mag-
nitude of the load keeps F = 100. Red, green, orange, blue,
magenta, and cyan indicate a gradual decrease in the dosages
of material on microscale. Without a redundant explanation,
the final results are all be post-processed to eliminate the in-
termediate variables.

4.1 2D examples

Minor different with the design domain in Fig. 4, the
geometric parameters are changed as length L = 120,
height H = 40 in Example I, and H = 30 in Example II,
respectively. The displacements restrictions are moved to
the left and right bottom corners, respectively. In the first
example, the load is applied to the same place in Fig. 4,
while it moves to the center of the bottom edge in the
second example.

Example I The influences of K are investigated with changing
K from 2 to 6.With ζ = 1, the ranges of microvolume fractions
are the same as the experimental design. Still, without the
macro design, the optimized topologies are illustrated in
Table 2. For comparison, with the same material consuming,
the optimized uniform microstructures corresponding to dif-
ferent K are orderly exhibited in Table 2 as well.

From Table 2, it is known that, altering K from 2 to 6, the
numbers of red microstructure always keep 3. One is located at
the point of force applied and the other two are located in the
right corner with implementing the boundary conditions. The
contributions of different parts are evolutionally revealed with
increased K, i.e., around the vicinity of force, constraint apply-
ing zones, and the left bottom edge, the different types of

microstructures distribute from inside to outside like a ring
according to their bearing capacity. Besides, themicrostructures
barely without the load capacity are mainly distributed in the
middle and right upper corner regions of the macrostructure.

As expected, in Fig. 10, when material consuming is the
same, the cluster-based structure has lower compliance than
the structure composed of uniform microstructure. With re-
gard to the disparate K, the red line in Fig. 10 is the relative
percentage of compliance between the above two structures.
From K = 2 to 6, the stiffness promotion of cluster-based
structure is from 22.67 to 54.82% compared with the uniform
microstructure. However, the increasing magnitude is gradu-
ally slowing with increased K. WhenK = 2 and 3, the stiffness
promotion is from 22.67 to 37.34%, but whenK = 5 and 6, the
stiffness promotion is only from 51.10 to 54.82%.

To further study the influence of microstructure distri-
bution on structural stiffness, as illustrated in Fig. 11, a
gradient structure composed of four microstructures is op-
timized. To guarantee the same material dosages with

H=30

L=50

B=8

F=100

y

z xo

Fig.14 A 3D cantilever beam structure

Fig. 15 The resulting topology of the macrostructure

Table 4 Comparisons between OC and HCA strategy

Optimization
strategy

Time for
100
steps (s)

Discreteness (%)

Iteration MP Mr1 Mr2 Mr3

OC 183.49 10 55.05 59.16 64.75 81.15

22 19.67 44.70 10.59 18.01

51 12.10 11.73 8.12 8.64

100 12.19 12.02 10.43 7.77

HCA 137.91 10 2.16 2.97 2.60 5.35

22 0.70 3.18 3.21 3.76

51 2.27 1.37 2.01 2.62

100 2.3 1.16 1.32 3.54
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clustering structure when K = 4, the volume fraction gradi-

ent varies from top to bottom as Vmic
1 ¼ 55:52%,

Vmic
2 ¼ 37:02%, Vmic

3 ¼ 30:02%, and Vmic
4 ¼ 25%, respec-

tively. Certainly, the gradient structure has worse stiffness
performance (C = 569.49) than the clustering structure
(C = 341.68). However, it is interesting to note that the
stiffness of gradient structure is even worse than the struc-
ture composed of uniform microstructure (C = 497.63).
Such results demonstrate that due to the unreasonable ma-
terial distributions, even with more microstructure forms,
i.e., more design freedoms, the multi-material structure
may still have a worse performance than the structure com-
posed of uniform microstructure. From the above analysis,
it is known that the clustering number and the material
distribution locations are coupled to affect the resulting
structural stiffness.

Example 2 In this example, both the macro and microstruc-
tures are simultaneously optimized. The total numbers of mi-
crostructure are assumed as K = 3. The macro volume frac-
tions are restrained as Vmac = 70%, 50%, and 30%,

respectively. Corresponding to different Vmac, the
microvolume fraction is uniformly designated as

Vmic
1 ¼ 80%, Vmic

2 ¼ 57:5%, and Vmic
3 ¼ 50% with ζ = 2,

respectively.
For the comparison, the optimized results with uniform

microstructure are also given in Fig. 12. Similar as the first
example, the clustering structures have better stiffness perfor-
mance than that composed of uniform microstructure. The
material distributions reflect the load-transmission contribu-
tions of different parts in the macrostructure as well. With
the decreasing of Vmac, the percentages of disparate micro-
structures are listed in Table 3. It is interesting that, accompa-
nied with the variation of Vmac, the dosages of strongmaterials
(microstructure 1 and 2) are increasing. This is because that
whenVmac is small, materials are required to bemore efficient-
ly filled in the design domain such that strong materials are
priority preferred.

As illustrated in Fig. 13, when Vmac = 30%, the numerical
procedure starting from the initial design to the converged
results in Fig. 12 needs 51 iterations. It is noted that the topo-
logical configurations in Fig. 13 have no post-processing. The

Table 5 The resulting microtopologies
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expressions MP ¼ ∑
M

m¼1
4Pm 1−Pmð Þ=M � 100% and Mrk ¼

∑
N

n¼1
4rkn 1−rknð Þ=N � 100% (Sigmund 2007) are adopted to

measure the discreteness of macro and microdesign variables.
If a discrete design is obtained,MP orMkn becomes 0%, and if
the design is full of intermediate value 0.5,MP orMkn = 100%.

To show the advantages of the proposed method, Table 4
provides the comparisons between Optimality Criteria (OC)
and HCA from the aspects of iterative time and discreteness of
design variables based on a computer with 8 Intel Core i7-
6700 processor, and 16GBmemory. One may see that HCA is
faster than OC within per 100 iterations. Moreover, the values
of MP and Mkn obtained by HCA are lower especially in the
early iterations, indicating that the HCA may achieve a clear
topology in much fewer iteration steps.

4.1.1 3D example

Figure 14 presents a cantilever subjected to a distributed ver-
tical load at the center of the right edge. The detailed geomet-
ric parameters are length L = 50, heightH = 30, and width B =
8. The total types of microstructures are still assumed K = 3.
The macro volume fraction is set as Vmac = 35%. With ζ = 2,

microvolume fractions are respectively equal to Vmic
1 ¼ 70%,

Vmic
2 ¼ 55%, and Vmic

3 ¼ 50%. The resulting compliance is
C = 2927.62. The optimized macrostructure is presented in
Fig. 15. Similar as the 2D case, the red microstructures are
distributed around the regions where the force and constraints
applied. The most design regions are occupied by the green
microstructures. Only a few blue microstructures are attached
to the green microstructures. The resulting microstructures are
given in Table 5. This example illustrates the capability of the
proposed model in 3D structures.

5 Conclusions

The clustering algorithm is introduced into HCA to achieve the
topology optimization for heterogeneous structures in consider-
ation of the locally non-uniformity on microscale. Through the
quasi-static test and numerical results, the significant stiffness
increase is observed of resulting structures compared with using
uniform periodic cells. It is noted that the stiffness of the cluster-
ing structure can be continuously enhanced with increasing clus-
tering number, but the magnitude increment is slowing. Besides,
it is observed that even with more design freedoms, a poor ma-
terial distribution may result in the nonperiodic structure worse
performance than periodic structure. It is interesting to discover
that with the macrovolume fraction decreasing, the dosages of
strong materials are increasing.

Generally speaking, HCA is relatively much cheaper since
the variable updating is heuristic-based, i.e., not usingmathemat-
ical programming. Moreover, the proposed concurrent method
based on HCA has advantages in iterative speed and capability
of attaining clear topologies in fewer iterations. Without a sensi-
tivity analysis, this method has certain potentials in solving
crashworthiness and energy absorption topology optimization
problems. However, this method has its shortcomings as well,
e.g., suboptimal way of choosing volume fractions for micro-
structures, choosing proportional gain by trial and error, not be-
ing immediately extensible to multi-constrained problems.
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