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a b s t r a c t 

Artificially designed structures with chirality are able to possess novel mechanical properties, for example, chiral 

honeycombs with negative Poisson’s ratio and chiral acoustic metamaterials. Inspired by the chiral nature of 

double-helical structure of DNA molecule, in this paper, we present a design of helical structure with chirality 

and study its mechanical behaviors through experimental characterization, theoretical analysis and numerical 

simulation. A compression-twisting coupling deformation mode is observed for different types of DNA-inspired 

helical structures due to the competition among compression, bending and twisting energy of the helical structures 

and tension energy of the interlinks. We find that interlinks between two intertwined helices are decisive to the 

compression-twisting coupling deformation mode and both chiral and non-chiral behaviors of the structures 

can be quantitively captured by our established theoretical and numerical models. The influences of various 

geometric parameters on the stiffness and deformation mode are discussed. Finally, we present two types of 

superposed structures that behave differently, showing a high designability of the DNA-inspired structures. This 

study exploits the chirality of bio-inspired structures and uses it in structural design with novel mechanical 

properties, which may shed light on the development of bio-inspired mechanical metamaterials, impact energy 

absorbers, multi-functional composite materials and among others. 
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. Introduction 

Chirality, an important concept in many branches of science, refers

o the property of non-superposability to the mirror image [8] . Ob-

ects with chirality exist from nanoscale to macroscale, to exemplify,

arbon nanotubes [7] , biomacromolecules [10,17] , shoes and gloves.

n the mechanical context, chirality leads to the coupling between ro-

ation and bulk deformation, which has inspired many artificial struc-

ures with mechanical properties that do not naturally exist, for exam-

le, chiral honeycombs with negative Poisson’s ratio [11,12,14] , chiral

coustic metamaterials [1,4,15,20] and chiral nanoparticle superlattices

18] . 

A well-known example of chirality is the double-helical structure of

NA molecule [17] . Two antiparallel helical strands of polynucleotides

ave great contribution to the precise encoding and stable transmis-

ion of genetic information. Since its first discovery, the mechanical

roperties of DNA structure have been extensively investigated. Ba-

ic mechanical constants such as Young’s modulus, Poisson’s ratio,

exural and torsional stiffness have been measured with molecular–
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iological techniques [6,13] , paving the way for the application of clas-

ical mechanics in establishing mechanical models of DNA structure

2,3,5,9,16] . 

Although a large quantity of research has been focused on model-

ng the mechanical behaviors of the molecular structure of DNA, few

ngineering structures have been designed following the principle of

NA structure. In this paper, we propose a DNA-inspired helical struc-

ure with chirality and study its mechanical behaviors through ex-

erimental characterization, theoretical analysis and numerical simu-

ation. Resembling hydrogen bonds between purines and pyrimidines

ue to complementary base pairing, connections are added between

wo helices to constrain their relative movement, which are deci-

ive to the chiral deformation mode. Both chiral and non-chiral be-

aviors of the proposed structures can be quantitively captured by

ur theoretical and numerical models. The influences of various ge-

metric parameters on the stiffness and deformation mode are dis-

ussed. Finally, we present two types of superposed structures that

ehave differently, showing a high designability of the DNA-inspired

tructures. 
iversity, Beijing, 100191, China. 
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Table 1 

Geometrical dimensions of DNA-inspired he- 

lical structure (unit: mm). 

H D d c d h D P t P 

100 48 5.6 5.6 60 10 
Nomenclature 

H height of DNA-inspired helical structure 

N number of connections 

D diameter of a helix 

D 0 original diameter of a helix 

R radius of a helix 

R 0 original radius of a helix 

d c diameter of a connection 

d h diameter of a helical rod 

D P diameter of a cylindrical plate 

t P thickness of a cylindrical plate 

A c cross-sectional area of a connection 

A h cross-sectional area of a helical rod 

L length of a helix 

L 0 original length of a helix 

I p,h polar moment of inertia of cross section of a helical rod 

I h moment of inertia of cross section of a helical rod 

H n height of samples for material testing 

D n diameter of samples for material testing 

x, y, z space coordinates 

r Space vector 

𝜙 angular coordinate 

𝜑 

h rotational angle per length of the cross section of the 

helix rod 

𝜑 h 0 original rotational angle per length of the cross section 

of the helix rod 

𝜅 curvature of the helix 

𝜅0 initial curvature of the helix 

Φc angle between the tangent line of the helix and z - x plane 

Φc 0 original angle between the tangent line of the helix and 

z - x plane 

𝜎eng engineering stress 

𝜀 eng engineering strain 

E Young’s modulus 

G shear modulus 

𝜈 Poisson’s ratio 

𝜀 h strain of helix 

F force 

M moment 

𝛿 displacement 

𝛿r relative displacement 

𝜃 rotation 

U S h tensile energy of a single helix 

U T h torsional energy of a single helix 

U B h bending energy of a single helix 

U h total strain energy of a single helix 

U S c tensile energy of a single connection 

U T c torsional energy of a single connection 

U B c bending energy of a single connection 

U c total strain energy of a single connection 

U total strain energy of DNA-inspired helical structure 

D E average element size 

Ῑ1 the first strain invariant 

Ῑ2 the second strain invariant 

U s strain energy per unit of reference volume 

C ij , D i temperature-dependent material parameters 

J el elastic volume strain 

[–] 0 quantity of benchmark structure 

𝛽 height-to-diameter ratio of the structure 

𝛽r relative height-to-diameter ratio of the structure 

𝛼 relative diameter of a connection 

AS axial stiffness of the structure 

RS rotational stiffness of the structure 
AS r relative axial stiffness of the structure 

RS r relative rotational stiffness of the structure 

𝜆 spatial periodicity 

. Experimental studies 

The geometry of DNA-inspired helical structures and information of

amples for experimental studies are provided as below. The schematics

f DNA-inspired helical structure is shown in Fig. 1 (a). The structure is

omposed of two intertwined helices with a rotation of 2 𝜋, two cylin-

rical thin plates at the boundaries, and 7 evenly-spaced connections

etween two helices, resembling hydrogen bonds between purines and

yrimidines of DNA molecular structures. The center lines of two inter-

wined helices can be analytically described by the following parametric

quations 

 1 ( 𝜙) = 

[
𝑅 cos 𝜙 𝑅 sin 𝜙 𝜙𝐻∕ ( 2 𝜋) 

]T 
(1a)

 2 ( 𝜙) = 

[
− 𝑅 cos 𝜙 − 𝑅 sin 𝜙 𝜙𝐻∕ ( 2 𝜋) 

]T 
(1b)

here r 1 and r 2 represent the space vector of two intertwined helices,

espectively. 

An important geometrical variation of DNA-inspired helical structure

s the number and positions of connections. The angle between neigh-

oring connections is 𝜋/4. The coordinates of connections are denoted

s #1–7 and Connection #4 can be regarded as the symmetrical center of

ll connections. Every two symmetrical connections about Connection

4 are presented in distinguished colors. For convenience, the structure

s denoted as N -(…), where N is the number of connections and digits

n the parenthesis represent the positions of connections. For example,

he structure shown in Fig. 1 (a) is denoted as 7-(1,2,3,4,5,6,7). Geo-

etrical dimensions of DNA-inspired helical structure are summarized

n Table 1 . Samples are additively fabricated with nylon PA2200 using

D printing device EOS P396 (see Fig. 1 (b)), which has a precision of

.1 mm. Because one end of the structure needs to be fixed to the testing

achine in experiments, a protruding is added to the printed samples

or the clamping, as is shown in Fig. 1 (c). 

Material tests are performed using testing machine INSTRON 8801

see Fig. 2 (a)). The height and diameter of samples for material test-

ng are D n = 12.7 mm and H n = 25.4 mm respectively, illustrated in

ig. 2 (b). To check whether printing direction has an effect on the me-

hanical properties of 3D-printed constituent material, material tests

f samples with different printing directions are conducted. The load-

ng speed is 5 mm/min. The results of material testing are presented in

ig. 2 (c–e). Fig. 2 (c) and (d) are the results of mechanical properties

long (sample #1–4) and perpendicular to (sample #5–8) the print-

ng direction respectively and Fig. 2 (e) is a direct comparison between

he two. Results in Fig. 2 (c) and (d) shows that material testing has

ood repeatability, and it can be concluded in Fig. 2 (e) that mechan-

cal properties of nylon PA2200 are independent of printing direction

nd thus can be regarded as isotropic. Only Young’s modulus and Pois-

on’s ratio are obtained as E = 1200 MPa and 𝜈 = 0.35 based on ma-

erial tests for further theoretical and numerical investigations, due to

hat the material strain of DNA-inspired helical structure compressed by

0% is very small and the stress–strain curve is still linear as shown in

ig. S1. 
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Fig. 1. Schematics and fabrication of DNA- 

inspired helical structure. (a) Schematics of 

DNA-inspired helical structure. (b) 3D print- 

ing device EOS P396. (c) A 3D-printed sample 

of DNA-inspired helical structure. 

Fig. 2. Material testing of nylon PA2200. (a) Material 

testing device INSTRON 8801. (b) Samples for material 

testing. (c–e) Material testing results of samples with dif- 

ferent printing directions. Stress–strain curves predicted 

by constitutive relations based on linear elasticity and hy- 

perelasticity are also provided. 
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Compression tests of DNA-inspired helical structures are performed

sing testing machine INSTRON 2345 (see Fig. 3 (a)). To investigate the

hiral behavior of the structure, the degree of freedom for rotation can-

ot be eliminated. To this end, one end of sample is fixed to the testing

achine by clamping, while the other end is loaded with a flat com-
ressor. To minimize the influence of friction between compressor and

pper plate on the mechanical response, lubricating grease is applied at

his interface to make sure the free rotation. A small camera is placed

n the upper face of the lower plate of the sample to record the rota-

ional movement of the structure. The mechanical behaviors of three
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Fig. 3. Compression tests of DNA-inspired helical structures. (a) Experimental setup of compression tests. (b) Deformations of different DNA-inspired helical structures 

during compression tests. (c) Force–displacement and rotation–displacement relations of different DNA-inspired helical structures. 
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Fig. 4. Schematic plot of the deformation of the DNA-inspired structure for on 

period. (a) Front view of the DNA-inspired structure before and after deforma- 

tion. (b) Top view of the helix. 
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ypes of structure are experimentally studied, namely, 7-(1,2,3,4,5,6,7),

-(2,4,6) and 0-(–). The loading speed is 2 mm/min, regarded as quasi-

tatic loading. 

Snapshots of compression tests of these structures are presented in

ig. 3 (b). As is shown, upon compressive loading, 7-(1,2,3,4,5,6,7) and

-(2,4,6) exhibit no lateral dilation, and from the red marker on the

elical rod we can clearly see that the two structures rotate over ap-

roximately a same angle of the same direction, corresponding to chiral

eformation. However, 0-(–) rotates over a relatively small angle of the

pposite direction and dilates laterally. Therefore, connections are deci-

ive to the deformation mode. Downward and counterclockwise looking

own from the compressor are taken as positive directions of displace-

ent and rotation. The experimental results of force–displacement and

otation–displacement relations of the three types of the structure are

resented in Fig. 3 (c). Structural stiffness increases with the number of

onnections. Rotation–displacement relations of 7-(1,2,3,4,5,6,7) and 3-

2,4,6) are almost identical, suggesting that these two types in fact have

he same chiral deformation mode. 

. Theoretical and numerical models 

.1. Theoretical modeling 

The principle of minimum potential energy was employed to theoret-

cally study the mechanical behaviors of DNA-inspired structure. When

he structure is subjected to axial and torsional loading, total potential

nergy of the system is expressed as 

= 𝑈 − 𝐹 𝛿 − 𝑀𝜃 (2)

hereas U represents the strain energy of the structure, which is com-

osed of tensile, torsional and bending energy of two helices and N con-

ections. To simplify the following theoretical analysis, the total rota-

ional angle of one helix after deformation is represented as 𝛾 = 𝜃 + 2 𝜋.

hen, the configurations of the DNA-inspired structure can be described

y R, 𝛾, 𝛿, as well as the initial geometry parameters, and the principle

f minimum potential energy gives 

 Π= 

𝜕𝑈 

𝜕𝑅 

𝑑 𝑅 + 

(
𝜕𝑈 

𝜕𝛿
− 𝐹 

)
𝑑𝛿 + 

( 

𝜕𝑈 

𝜕𝛾
− 𝑀 

) 

𝑑𝛾= 0 (3)

hus, the governing equations are 

𝜕𝑈 

𝜕𝑅 

= 0 (4)

𝜕𝑈 − 𝐹 = 0 (5)

𝜕𝛿
𝜕𝑈 

𝜕𝛾
− 𝑀 = 0 (6)

The mechanical behaviors of the DNA-inspired structure could be

etermined by Eqs. (4)–(6) . 

Schematic plot of the deformation of the DNA-inspired structure is

iven in Fig. 4 . According to Fig. 4 , strain energy of one period of the

NA-inspired helical structure can be expressed as 

 = 2 𝑈 h + 𝑁 𝑈 c (7)

n which U h and U c represent the strain energy of a single helix and a

ingle connection, respectively. U h and U c can then be further expressed

s 

 h = 𝑈 

S 
h + 𝑈 

T 
h + 𝑈 

B 
h (8)

 c = 𝑈 

S 
c + 𝑈 

B 
c + 𝑈 

T 
c (9)

here U h 
S , U h 

T and U h 
B represent the tensile, twisting and bending

nergy of a single helix, respectively, while U c 
S , U c 

T and U c 
B represent

he above forms of energy of a connection, respectively. Based on the

ypothesis of linear elasticity, the aforementioned forms of energy can

e analytically expressed as 

 

S 
h = 

1 
2 
𝐸 𝜀 2 h 𝐿 0 𝐴 h = 

𝐸 𝐴 h 
2 𝐿 0 

(
𝐿 − 𝐿 0 

)2 
(10)

 

T 
h = 

1 
𝐺 𝐼 p , h 

(
𝜑 

h − 𝜑 

h 
0 
)2 
𝐿 0 (11)
2 
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B 
h = 

1 
2 
𝐸 𝐼 h 

(
𝜅 − 𝜅0 

)2 
𝐿 0 (12)

 

S 
c = 

1 
2 
𝐸 𝜀 2 c 

(
2 𝑅 0 

)
𝐴 c = 

𝐸 𝐴 c 
𝑅 0 

(
𝑅 − 𝑅 0 

)2 
(13)

 

T 
c = 

1 
2 
𝐺 𝐼 p , c 

( 

Φc − Φc 
0 

𝑅 

) 2 (
2 𝑅 0 

)
(14)

 

B 
c = 0 (15)

here 𝐼 p , h = 𝐴 

2 
h ∕( 2 𝜋) , 𝐼 h = 𝐴 

2 
h ∕( 4 𝜋) and 𝐼 p , c = 𝐴 

2 
c ∕( 2 𝜋) are the polar mo-

ent, moment of inertia of cross section of the helical rod and polar

oment of inertia of cross section of the connection, respectively. Here,

he lengths of the helix before and after deformation are 

 

2 
0 = 

(
2 𝜋𝑅 0 

)2 + 𝐻 

2 (16a)

 

2 = ( 𝛾𝑅 ) 2 + ( 𝐻 − 𝛿) 2 . (16b)

According to the previous literatures, the rotational angle per length

f the cross section of the helix rod before and after deformation are 

 

h 
0 = 2 𝜋𝐻∕ 𝐿 

2 
0 (17a)

 

h = 𝛾( 𝐻 − 𝛿) ∕ 𝐿 

2 (17b)

And the curvatures of the helix before and after deformation are 

0 = 4 𝜋2 𝑅 0 ∕ 𝐿 

2 
0 (18a)

= 𝛾2 𝑅 ∕ 𝐿 

2 . (18b)

c 
0 and Φc are the angles between the tangent line of the helix and z –x

lane before and after deformation which determine the torsion of the

onnections, 

in 
(
Φc 

0 
)
= 

𝐻 

𝐿 0 
(19a) 

in 
(
Φc ) = 

𝐻 − 𝛿

𝐿 

. (19b)

Combining Eqs. (7 )–19a ) and ( 19b ), the partial derivatives in Eqs.

3 )–( (6) can be further expressed as 

𝜕𝑈 

𝜕𝑅 

= 2 𝐸 𝐴 h 𝛾
2 𝑅 

( 

1 
𝐿 0 

− 

1 
𝐿 

) 

+ 

2 𝑁𝐸 𝐴 c 
𝑅 0 

(
𝑅 − 𝑅 0 

)
− 

2 𝐺𝐴 

2 
h 𝐿 0 ( 𝐻 − 𝛿) 𝛾3 𝑅 

𝜋𝐿 

4 

[ 

𝛾( 𝐻 − 𝛿) 
𝐿 

2 − 

2 𝜋𝐻 

𝐿 

2 
0 

] 

− 

𝑁𝐺𝐴 

2 
c 𝑅 0 

𝜋𝑅 

3 

{ 

𝑅𝛾( 𝐻 − 𝛿) 
𝐿 

2 + arcsin 
(
𝐻 − 𝛿

𝐿 

)
− arcsin 

( 

𝐻 

𝐿 0 

) } 

×
[ 
arcsin 

(
𝐻 − 𝛿

𝐿 

)
− arcsin 

( 

𝐻 

𝐿 0 

) ] 

+ 

𝐸𝐴 

2 
h 𝐿 0 𝛾

2 (𝐿 

2 − 2 𝑅 

2 𝛾2 
)

2 𝜋𝐿 

4 

( 

𝑅 𝛾2 

𝐿 

2 − 

4 𝜋2 𝑅 0 

𝐿 

2 
0 

) 

(20) 

𝜕𝑈 

𝜕𝛿
= −2 𝐸 𝐴 h ( 𝐻 − 𝛿) 

( 

1 
𝐿 0 

− 

1 
𝐿 

) 

− 

𝐺𝐴 

2 
h 𝐿 0 𝛾

[
2 ( 𝐻 − 𝛿) 2 − 𝐿 

2 ]
𝜋𝐿 

4 

[ 

𝛾( 𝐻 − 𝛿) 
𝐿 

2 − 

2 𝜋𝐻 

𝐿 

2 
0 

] 

− 

𝑁𝐺𝐴 

2 
c 𝑅 0 𝜃

𝜋𝑅 𝐿 

2 

[ 
arcsin 

(
𝐻 − 𝛿

𝐿 

)
− arcsin 

( 

𝐻 

𝐿 0 

) ] 

+ 

𝐸𝐴 

2 
h 𝐿 0 𝑅 𝛾2 ( 𝐻 − 𝛿) 

𝜋𝐿 

4 

( 

𝑅 𝛾2 

𝐿 

2 − 

4 𝜋2 𝑅 0 

𝐿 

2 

) 

(21) 
0 
𝜕𝑈 

𝜕𝛾
= 2 𝐸 𝐴 h 𝛾

2 𝑅 

( 

1 
𝐿 0 

− 

1 
𝐿 

) 

− 

𝐺𝐴 

2 
h 𝐿 0 ( 𝐻 − 𝛿) 

(
2 𝛾2 𝑅 

2 − 𝐿 

2 )
𝜋𝐿 

4 

[ 

𝛾( 𝐻 − 𝛿) 
𝐿 

2 − 

2 𝜋𝐻 

𝐿 

2 
0 

] 

− 

𝑁𝐺𝐴 

2 
c 𝑅 0 ( 𝐻 − 𝛿) 
𝜋𝑅 𝐿 

2 ×
[ 
arcsin 

(
𝐻 − 𝛿

𝐿 

)
− arcsin 

( 

𝐻 

𝐿 0 

) ] 

+ 

𝐸𝐴 

2 
h 𝐿 0 𝑅𝛾

(
𝐿 

2 − 2 𝑅 

2 𝛾2 
)

𝜋𝐿 

4 

( 

𝑅 𝛾2 

𝐿 

2 − 

4 𝜋2 𝑅 0 

𝐿 

2 
0 

) 

(22) 

In the experiment, axial loading is applied and the DNA-inspired

tructure is free of rotation which gives M = 0. Substituting 𝜕 U / 𝜕 𝛾 = 0

nto Eq. (22) , the relations of F, R, 𝜃 to the axial compression displace-

ent 𝛿 are obtained by numerical solving Eqs. (20)–(22) . Besides, the

orsional loading is also applied to the DNA-inspired structure in our

nite element (FE) simulations and the DNA-inspired structure is free of

eformation in the axial direction. Substituting 𝜕 U / 𝜕 𝛿 = 0 into Eq. (21) ,

he relations of M, R, 𝛿 to the rotational angle 𝜃 are obtained by numer-

cal solving Eqs. (20)–(22) . The comparisons of theoretical predictions

o that of the experimental results and FE simulation results are given

n the following sections which show very good agreements. 

According to experimental results, connections between two inter-

wined helices are decisive to the chiral deformation mode of the struc-

ure. Namely, neglecting the elongation or contraction of connections

ue to elastic deformation, connections serve as a constraint that keeps

he relatively spacing of two helices constant. Therefore, the deforma-

ion pattern of the structure becomes helical movement and thus the

xial and rotational deformation of the structure are dependent, sug-

esting a one-degree-of-freedom system. Neglecting the elongation or

ontraction of helical rods due to elastic deformation, the geometric re-

ation of helical movement corresponding to chirality can be given as

2 𝜋𝑅 0 
)2 + 𝐻 

2 = 

[
( 2 𝜋 + 𝜃) 𝑅 0 

]2 + ( 𝐻 − 𝛿) 2 (23)

.2. Numerical modeling 

Numerical calculations are performed based on finite element (FE)

ethods using commercial software ABAQUS. DNA-inspired helical

tructure is meshed with 10-node quadratic tetrahedron elements (el-

ment type in ABAQUS: C3D10 (ABAQUS 6.14 Documentation)). Two

ypes of constitutive relation are used in the numerical model, namely,

inear elasticity and hyperelasticity. For linear elastic constitutive rela-

ion, material parameters are set as E = 1200 MPa and 𝜈 = 0.35, consis-

ent with material testing results. For hyperelastic constitutive relation,

olynomial form of the strain energy is applied, expressed as 

 s = 𝐶 10 
(
𝐼 1 − 3 

)
+ 𝐶 01 

(
𝐼 2 − 3 

)
+ 𝐶 20 

(
𝐼 1 − 3 

)2 + 𝐶 11 
(
𝐼 1 − 3 

)(
𝐼 2 − 3 

)
+ 𝐶 02 

(
𝐼 2 − 3 

)2 + 

2 ∑
𝑖 =1 

1 
𝐷 𝑖 

(
𝐽 el − 1 

)2 𝑖 
(24) 

Material constants are computed based on material testing data.

tress–strain curves predicted based on these two constitutive relations

re provided in Fig. 2 (c–e). The boundary conditions of the FE model are

llustrated in Fig. 4 (a). The lower plate of the structure is fixed, while

he upper plate is free to translate along and rotate about Y axis and

 displacement of the upper plate is set as 30 mm to achieve loading

 Fig. 5 ). 

Firstly, compression tests are performed numerically based on aver-

ge element sizes of ∼2.3 mm, ∼1.3 mm and ∼1.0 mm. It is shown that

hen the element size downsizes from ∼1.3 mm to ∼1.0 mm, the devi-

tion of numerical results is negligibly small, thus validating the con-

ergence of the FE model. For the efficiency of numerical calculation,

tructures are meshed with elements with an average size of ∼1.3 mm

n further FE simulations. 
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Fig. 5. Descriptions of FE model. (a) Illustration of 

boundary conditions. (b) Numerical compression tests 

based on different average element sizes as the conver- 

gence validation of FE model. 

Fig. 6. Experimental results (EXP), numerical results of FE calculations based 

on linear elasticity (LE) and hyperelasticity (HE), and theoretical predictions 

(THEOR) of three types of DNA-inspired helical structures subject to compres- 

sive loading. 
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. Results 

Experimental and numerical results of force-displacement relations

f DNA-inspired helical structures subject to compressive loading, as

ell as theoretical predictions, are presented in Fig. 6 . It is shown that

hese results generally yield good agreement. Because there exhibits no

arge deviation between the numerical results based on linear elasticity

nd hyperelasticity, for the convenience of further analysis and discus-

ion, linear elastic constitutive relation is used in the numerical stud-

es afterwards. Note that theoretical predictions are slightly lower than

ther results. This could be explained by the fact that the boundary

lates can have an effect on the increase of overall stiffness of the struc-

ure, which is not taken into account in the theoretical model. We will

ater show that when the structure becomes longer where the boundary

ffect becomes less significant, the force-displacement results converge

o the theoretical predictions. 

Because the chiral deformation of DNA-inspired helical structure is a

ne-degree-of-freedom problem, for an axial loading over some displace-

ent, same structural deformation could be realized when the struc-

ure is subject to torsional loading over a certain rotation. Suppose this

isplacement is 30 mm downward, comparison of FE-calculated mor-

hologies of DNA-inspired helical structure subject to axial loading,

orsional loading and the prediction of geometric relation is shown in

ig. 7 (a), where space coordinates of nodes of FE model after deforma-

ion are extracted to reconstruct the deformed shapes. It is shown that

E-calculated morphologies are in good accordance with the prediction
Fig. 7. Deformation predictions based on FE 

calculations, geometric relation, and theoretical 

model. (a) Comparison of FE-calculated mor- 

phologies of DNA-inspired helical structure sub- 

ject to compression and torsion and geomet- 

ric relation. (b) Rotation–displacement relation 

based on the predictions of geometric relation 

and theoretical model and numerical and exper- 

imental results. 
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Fig. 8. FE results of various structures under different loading conditions. (a) Force-displacement relations subject to axial loading. (b) Moment–rotation relations 

subject to torsional loading. (c) Rotation–displacement relations subject to axial loading. (d) Displacement–rotation relations subject to torsional loading. 
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Fig. 9. Rotation–displacement relations of 7-(1,2,3,4,5,6,7) under different 

loading conditions based on geometric relation, FE calculation and theoretical 

model. 
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5

 

t  
f geometric relation. Note that there is a small noncoincidence between

he deformed shapes caused by compressive and torsional loadings. This

ould be accounted for by the difference of strain fields due to differ-

nt loading conditions. Deformation based on FE calculation is nonuni-

orm because the structure is stiffer near the boundary plates, while the

rediction of geometric relation yields uniform deformation. This re-

ults in a minor deviation between the FE-calculated and geometrically

redicted deformed shapes near the boundary. Experimental and nu-

erical results of rotation–displacement relation, as well as the predic-

ions based on geometric relation and theoretical model, are presented

n Fig. 7 (b), generally showing a good consistency. Upon relatively large

isplacement ( 𝛿 > 20 mm), theoretical prediction of structure with no

onnection begins to deviate from numerical and experimental results.

his is because for this type of structure, large deflection of helical rods

ay occur, dissatisfying the hypothesis of small deformation of the the-

retical model. 

Next, numerical calculations are performed based on this model to

nvestigate the mechanical responses of more types of structures under

arious loading conditions. Force-displacement relations and moment–

otation relations of various structures are presented in Fig. 8 (a) and (b).

esults show that both axial and rotational stiffness increase with the

umber of connections. For structures with unsymmetrically-arranged

onnections, for example, 3-(1,2,3), its axial and rotational stiffness

re significantly inferior to its symmetrical counterpart, i.e. 3-(2,4,6).

otation–displacement relations under axial and torsional loading are

resented in Fig. 8 (c) and (d). Results show that as the number of con-

ections increases, deformation modes tend to converge, correspond-

ng to chiral deformation. In this case, the structures exhibit zero lat-

ral dilation subject to compression and counterclockwise torsion, and

xhibit zero lateral shrinkage subject to tension and clockwise tor-

ion, which can be called stable deformation modes. For structure with

nsymmetrically-arranged connections 3-(1,2,3), unlike its symmetrical

ounterpart 3-(2,4,6), its rotation–displacement relation does not reach

he stable deformation modes. 

For stable deformation modes with chirality, different loading con-

itions can result in the same deformed shape. Taking 7-(1,2,3,4,5,6,7)
s an example, predictions based on geometric relation and theoretical

odel and numerical results of rotation–displacement relation of under

ompression, tension and counterclockwise/clockwise torsion are pre-

ented in Fig. 9 , showing a good consistency. 

. Discussion 

.1. Governing factors on structural stiffness 

The structural stiffness of DNA-inspired helical structure can be

uned by geometrical variation. It has been shown that the structure
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Fig. 10. Effect of height-to-diameter ratio and relative diameter of connections on (a) axial and (b) rotational stiffness. 

Fig. 11. The influence of spatial periodicity on force–

displacement relation. The occurrence of buckling behavior 

is circled. 
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fl  
ecomes stiffer as the number of connections increase and that unsym-

etrical arrangement of connections deteriorates both axial and rota-

ional stiffness. The influences of height-to-diameter ratio and diam-

ter of connections on structural stiffness are quantitatively discussed

ased on 7-(1,2,3,4,5,6,7) with a stable chirality deformation mode as

ollows. Nondimensionalized quantities relative height-to-diameter ra-

io 𝛽r and relative diameter of connections 𝛼 are introduced, defined

s 

r = 𝛽∕ [ 𝛽] 0 = 

𝐻∕ 𝐷 0 [
𝐻∕ 𝐷 0 

]
0 

(25)

= 𝑑 c ∕ 
[
𝑑 c 
]
0 (26)

Because the diameter of connections cannot exceed the diameter of

elical rods, we have 𝛼 ∈ (0, 1]. Structural stiffness is quantified by axial

nd rotational stiffness at 𝛿 = 0 and 𝜃 = 0 as 

𝑆 = 

d 𝐹 
d 𝛿r 

||||𝛿r =0 (27)

𝑆 = 

d 𝑀 

d 𝜃
||||𝜃=0 (28)

Relative axial and rotational stiffness are defined as AS r = AS /[ AS ] 0 
nd RS r = RS /[ RS ] 0 respectively. Results are presented in the form of

–𝛽r maps in Fig. 10 . It can be observed that both axial and rotational

tiffness are in proportion to the diameter of connections. This conclu-

ion is comprehensible because the increase of diameter of connections
esults in larger axial and rotational stiffness of connections, adding to

he total strain energy of the structure upon a certain structural defor-

ation. However, as height-to-diameter ratio increases, axial stiffness

ecomes higher while rotational stiffness becomes lower. To understand

his graphically, “thinner ” structures are more resistant to axial loading

ut more vulnerable to rotational loading, and vice versa. This suggests

hat balancing axial and rotational stiffness can be possibly achieved by

uning height-to-diameter ratio. 

The influence of spatial periodicity on force-displacement relation is

tudied as below. Relative displacement is defined as 𝛿r = 𝛿/ H . Com-

ression and tension tests are performed numerically with structures of

, 2 𝜆 and 3 𝜆, and are compared with theoretical predictions. Results

n Fig. 10 show that shorter structure has higher stiffness due to the

trengthening of boundary plates, and that when the structure becomes

onger, force-displacement relation converges to the prediction of the-

retical model, in which case the boundary effect becomes less signif-

cant. Note that for the structure of 3 𝜆, Euler buckling behavior can

ccur, as is circled in Fig. 11 . The buckling analysis of DNA-inspired

elical structures will be covered in our future work. 

.2. Governing factors on deformation mode 

Deformation mode dominates the mechanical behavior such that in-

uences of height-to-diameter ratio, diameter of connections, spatial
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Fig. 12. Influences of (a) height-to-diameter ratio, (b) diameter of connections, (c) spatial periodicity, and (d) Young’s modulus of the constituent material on 

rotation–displacement relation. The occurrence of buckling behavior is circled. 
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structures. 
eriodicity, as well as Young’s modulus of the constituent material

n the chiral deformation mode of DNA-inspired helical structure

re discussed as follows. Numerical calculations are still based on 7-

1,2,3,4,5,6,7) and chiral deformations are induced by axial loading.

ig. 11 (a) presents the rotation–displacement relations of 𝛽r = 0.75, 1

nd 1.25, showing that for higher height-to-diameter ratio, upon axial

oading to a certain relative displacement, the structure rotates over a

arger angle. This suggests that chirality becomes stronger as the struc-

ure becomes “thinner ”. Fig. 11 (b) presented the results of 𝛼 = 0.5, 0.75

nd 1, indicating that diameter of connections in fact has little effect on

he rotation–displacement relation. Although the decrease of diameter

f connections can lower the overall structural stiffness, the constrain-

ng function of connections still exists. Fig. 11 (c) gives the rotation–

isplacement of different spatial periodicity 𝜆, 2 𝜆 and 3 𝜆, showing that

tructure with higher spatial periodicity rotates more upon axial load-

ng to a certain relative displacement, though Euler buckling can hap-

en. Different from the effect of height-to-diameter ratio, this could be

xplained by the superposition of chirality of spatial periods. Finally,

ig. 11 (d) investigates the deformation mode of [ E ] 0 , 1.5[ E ] 0 and 2[ E ] 0 ,

ndicating that in the linear elastic FE model, Young’s modulus of the

onstituent material does not affect the chiral deformation mode. Above

nalysis brings lights on how geometrical/material parameters affect the

table chiral deformation mode of DNA-inspired helical structures. 

.3. Superposed structures 

Lastly, the mechanical behaviors of DNA-inspired helical superposed

tructures with translational and central symmetry (denoted as TS and
S respectively) are investigated, of which the bandgap properties are

iscussed in Ref. [19] . The superposed structures are composed of a top

late, a middle plate, a bottom plate, and two double-helical parts based

n 7-(1,2,3,4,5,6,7). The bottom plate is fixed and loads are exerted to

he top plate. The only difference lies in the double-helical parts. In

he TS superposed structure, two double-helical parts have the same

otational direction, while in the CS superposed structure, they have an

pposite rotational direction. The schematics are shown in Fig. 12 (a)

 Fig. 13 ). 

Axial and torsional loading are applied to the top plates to inves-

igates the mechanical responses of the superposed structures, as are

resented in Fig. 12 (b–e). Results in Fig. 12 (b) and (c) shows that

heir force-displacement and moment–rotation relations have little dif-

erence, indicating that symmetrical property actually has little effect

n the overall structural stiffness. On the other hand, it can be ob-

erved from Fig. 12 (d) and (e) that the deformation modes of two

uperposed structures are completely different. Upon the same axial

oading, the middle plates of TS and CS superposed structures rotate

ver a same angle. Interestingly, in contrast to TS superposed struc-

ure, the top plate of CS superposed structure does not rotate upon

xial loading. Upon the same torsional loading, the middle plates

f TS and CS superposed structures translate over a same displace-

ent. However, the top plate of CS superposed structure does not

ranslate. This deformation mode can be explained by the cancella-

ion of chirality of two double-helical parts of CS superposed struc-

ure due to its symmetrical property. The proposal of superposed struc-

ures greatly expands to the designing freedom of DNA-inspired helical
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Fig. 13. Mechanical behaviors of DNA-inspired helical superposed structures with translational and central symmetry. (a) Schematics of DNA-inspired helical 

superposed structures with translational and central symmetry. (b) Force–displacement relations subject to axial loading. (c) Moment-rotation relations subject to 

torsional loading. (d) Rotation–displacement relations subject to axial loading. (e) Displacement–rotation relations subject to torsional loading. 
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. Conclusion 

In this work, we present a design of helical structure with chiral-

ty and study its mechanical behaviors experimentally, theoretically

nd numerically. We find that connections between two intertwined

elices are decisive to the stable chiral deformation mode and both

hiral and non-chiral behaviors of the structures can be quantitively

aptured by our theoretical and numerical models. The influences of

arious geometric parameters on the stiffness and deformation mode

re discussed. Finally, we present two types of superposed structures

hat behave differently, showing a high designability of the DNA-

nspired structures. This study exploits the chirality of biological struc-

ures and uses it in structural design with novel mechanical proper-

ies, which may facilitate the development of bio-inspired mechanical

etamaterials, impact energy absorbers and multi-functional composite

aterials. 
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